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Fractal properties of spacing distributions
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Department of Mathematics, Bolton Institute, Deane Road, Bolton BL3 5AB, UK
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Abstract. The paper reports a link between the Hausdorff dimension of a number theoretically
based set, and certain arithmetic properties of the spacing distribution of the two-dimensional
harmonic oscillator. It is shown that the set of pointsω ∈ [0, 1], with continued fraction
[a1, a2, . . .], such that log

∏n
i=1 a

1/n

i diverges, has Hausdorff dimension12 . The set of

convergentspn/qn = [a1, . . . , an], such that the seriesq1/n
n diverge, is also shown to have

a Hausdorff dimension12 . Although this result can be seen as a purely number-theoretic result,
it is related to level spacing distributions in the following manner. For the two-dimensional
harmonic oscillator with frequency ratio,ω, that has a continued fraction satisfying the above
condition, the level spacing distribution isδ(s). Thus, the non-ergodic behaviour of the two-
dimensional oscillator has Hausdorff dimension1

2 . Similar results are found for the system of
a particle trapped in a box, using a number-theoretic result of Ramanujan.

1. Introduction

This paper investigates the Hausdorff dimension of two sets arising in continued fraction
theory. Continued fractions have many applications in the Diophantine approximation. A
multitude of examples can be found in [1] or [2] for example. For other results on Hausdorff
dimensions relating to continued fractions, [3] is a good source. Any numberω ∈ [0, 1]
can be expressed uniquely as a continued fraction,

ω = [a1, a2, . . .] = 1

a1 + 1

a2 + . . .

(1)

where theai are positive integers. The convergents are defined by,

pn

qn

= [a1, . . . , an] = 1

a1 + 1

a2 +
. . .

an

(2)

which are alternately upper and lower bounds forω asn → ∞. The following induction
laws are obeyed,

p1 = 1 p2 = a2 pn = anpn−1 + pn−2

q1 = a1 q2 = a1a2 + 1 qn = anqn−1 + qn−2.
(3)

The Hausdorff dimension is a measure of a set size, giving fractional dimensions for
sets of fractal nature, such as the Cantor set. Examples can be found in [3] and [4]. The

0305-4470/97/030915+12$19.50c© 1997 IOP Publishing Ltd 915



916 C Greenman

Hausdorff measure of any set,X, arises as follows. First anε-cover of X by balls Ai is
formed, where diamAi 6 ε. Then define the function

Hs
ε (X) = inf

{ ∑
i

(DiamAi)
s

}
(4)

where the infimum is taken over all possibleε-covers ofX. The Hausdorff measure is then
defined as

Hs(X) = lim
ε→0

Hs
ε (X).

It can then be shown that,

Hs(X) =
{

∞ s < D(X)

0 s > D(X)
(5)

thereD(X) is the Hausdorff dimension ofX. This paper proves the following results.

Theorem 1.The set of pointsω ∈ [0, 1], with continued fraction [a1, a2, . . .], such that

lim
n→∞

1

n
log

n∏
i=1

ai = ∞ (6)

has the Hausdorff dimension12.

Corollary 1.1. For convergentspn

qn
= [a1, . . . , an], such that the seriesq

1
n
n diverge, the

Hausdorff dimension is12.

The paper will proceed as follows. In section 2 the method of the proof will be outlined
in more detail. Section 3 gives an arithmetical bound, which is used to obtain an upper
bound of 1

2 for the Hausdorff dimension of theorem 1. Section 5 uses the measure theory
arguments to obtain a lower bound of1

2, which completes theorem 1. In section 6, the
corollary is proved. Conclusions follow in the final section, where the particle in a box is
examined.

Note that both sets being measured are dense in [0, 1]. To see this, note that any number
[b1, b2, . . .] can be approximated arbitrarily closely by [b1, . . . , bn, c1, c2, . . .], whereci = i!,
which is a member of the set measured in theorem 1 and in corollary 1.1.

It is also worth remarking that these studies arose from work on the quantum mechanics
of dynamical systems. The level spacing distribution of the two-dimensional harmonic
oscillator was studied, where it was found that ifω is the ratio of the frequencies of the
oscillations, such that the conditions of theorem 1 were satisfied,δ(s) was obtained. Further
details can be found in [7] and [8].

2. The method of proof

Let X be the set of pointsω ∈ [0, 1] that satisfy (6). The first half of the proof will show
that 1

2 is an upper bound of the Hausdorff dimension, denotedD(X). A covering setX(κ)

of X is defined by [a1, a2, . . .] ∈ X(κ) if and only if,

lim
n→∞

1

n
log

[ n∏
i=1

ai

]
> logκ
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whereκ is finite. SoX(κ) coversX with limκ→∞ X(κ) = X. So if [a1, a2, . . .] ∈ X(κ),
then for a suitably largeN , ∀n > N ,

n∏
i=1

ai > κn. (7)

With this, D(X(κ)) will be shown to have an upper bound of1
2. As D(X) 6 D(X(κ))

it then follows thatD(X) will have an upper bound of12. To obtain a lower bound of
1
2, the following argument is used. First the subsetY ⊂ X is defined as follows. Let
(a1, a2, . . . , an) denote the set of points that have continued fraction [a1, . . . an, . . .], where
a1, . . . , an are fixed andan+1, an+2, . . . are free ranging over the natual numbers. Thus
(a1, a2, . . . , an) = [a1, a2, . . . , an−1, an + t ] is the interval covered ast ranges over [0, 1).
Then define,

Yn =
4⋃

a1=1

7⋃
a2=2

. . .

3n+1⋃
an=n

(a1, . . . , an). (8)

Then the setY arises as the intersection of the nested setsYn, i.e.

Y =
∞⋂

n=1

Yn = lim
n→∞ Yn.

To see that this is a subset ofX, note that all points inYn requireai > i, so
∏n

i=1 ai > n!
and log

∏n
i=1 ai > n logn (by Stirling’s formula, which can be found in [9]), and so

lim
n→∞

log(a1 . . . an)

n
= ∞

as required by (6). If a measure,µ, is found such that for any interval,I , of any ε-cover
Ȳ of Y ,

µ(I) 6 A|I | 1
2 (9)

for any constant,A > 0, then

µ(Ȳ ) 6 A
∑
I∈Ȳ

|I | 1
2 .

As this is true for any cover,̄Y , the infimum may be taken to give,

µ(Ȳ ) 6 AH
1
2

ε (Y ).

So asY ⊂ Ȳ , µ(Y ) < µ(Ȳ ) and

H
1
2

ε (Y ) > µ(Y )

A
.

The final step is to show thatµ(Y ) > 0, which yields

H
1
2

ε (Y ) > 0 (10)

which in comparison with (5) gives,

D(Y) > 1
2.

Noting thatY ⊂ X, it follows thatD(Y) < D(X) and the proof of theorem 1 is complete.
The following section obtains the number theoretical bound necessary to obtain the upper
bound on the Hausdorff dimension.
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3. The applicable arithmetic number theory

If dn(m) denotes the number of ways of expressingm as the product ofn positive factors
(any number of which may be unity), where only the order of the factors is to be regarded
as distinct, then,

Lemma 3.1.

∑
m>x

dn(m)

mr
6

(
2ζ(r)

r − 1

)n 1

xr−1

n−1∑
l=0

(logx)l

l!
(11)

where 16 r 6 2.

The application of this lemma arises by puttingr = 2s, at which point the sum on the
left-hand side becomes the sum in (4) used to obtain the upper bound on the Hausdorff
dimension. Note that the lemma can be extended tor > 2 by simply removing ther − 1
denominator, although this will have no implication on the Hausdorff dimension (which is
certainly not greater than unity).

Proof. The method of proof used will be that of induction. First define,

c(n, x) =
∑

{a1...an>x}

n∏
i=1

a−r
i =

∑
m>x

dn(m)

mr
. (12)

Now assume that (11) is true forn. Then with the observation that,∑
a1...an

n∏
i=1

a−r
i = ζ(r)n

the following recursive formula can be formed,

c(n + 1, x) =
[x]∑
k=1

k−rc

(
n,

x

k

)
+ ζ(r)n

∞∑
[x]+1

k−r .

So using the inductive hypothesis,

c(n + 1, x) 6
(

2ζ(r)

r − 1

)n [x]∑
k=1

k−r

(
k

x

)r−1 n−1∑
l=0

(
log x

k

)l
l!

+ ζ(r)n
∞∑

[x]+1

k−r

=
(

2ζ(r)

r − 1

)n 1

xr−1

n−1∑
l=0

1

l!

[x]∑
k=1

(
log x

k

)l
k

+ ζ(r)n
∞∑

[x]+1

k−r .

Then first,
∞∑

[x]+1

k−r 6 |k−r |k=x +
∫ ∞

x

dk

kr
= 1

xr
+ 1

(r − 1)xr−1
6 2

(r − 1)xr−1

so,

ζ(r)n
∞∑

[x]+1

k−r 6 2ζ(r)n

(r − 1)xr−1
6

(
2ζ(r)

r − 1

)n 1

xr−1
.

Secondly, there are bounds,

[x]∑
k=1

(
log x

k

)l
k

6
∣∣∣∣∣
(
log x

k

)l
k

∣∣∣∣∣
k=1

+
∫ x

1

(
log x

k

)l
k

dk = (logx)l + (logx)l+1

l + 1
.
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Then putting these two bounds together gives,

c(n + 1, x) 6
(

2ζ(r)

r − 1

)n 1

xr−1

{
n−1∑
l=0

[
(logx)l

l!
= (logx)l+1

(l + 1)!

]
+ 1

}

6
(

2ζ(r)

r − 1

)n+1 1

xr−1

n−1∑
l=0

(logx)l

l!
.

Then noting that,

c(1, x) =
∑
a>x

a−r 6 2

(r − 1)xr−1
6 2ζ(r)

(r − 1)xr−1

completes the induction and also the proof.

4. The upper bound

As outlined in section 2, the objective here is to obtain an upper bound onD(X(κ)). To
obtain the upper bound, any cover ofX(κ) can be used and considered as the infimum in
(4).

Now any point [a1, a2, . . .] in the setX(κ) is covered by the interval(a1, a2, . . . , an) (for
anyn). These intervals will make up theε-covers ofX(κ), so their length is required. Each
interval (a1, a2, . . . , an) can be parametrized asl(t) = [a1, a2, . . . , an + t ], with t ∈ [0, 1],
where the total lengthL is,

L =
∫ 1

0

∣∣∣∣dl(t)

dt

∣∣∣∣ dt.

But,

dl(t)

dt
= − [a1, . . . , an + t ]2 d

dt
[a2, . . . , an + t ]

= (−1)n
n∏

i=1

[ai, . . . .an + t ]2

thus,

L =
∫ 1

0

n∏
i=1

[ai, . . . , an + t ]2dt.

However, there exists bounds,

1

ai

> [ai, . . . , an + t ] > 1

ai + 1
(13)

giving,
n∏

i=1

1

a2
i

> L >
n∏

i=1

1

(ai + 1)2
. (14)

Thus, any points [a1, a2, . . .] ∈ X(κ) can be covered by intervals with a diameter below∏n
i=1 a−2

i , which tends to zero in the limit ofn going to infinity. Now forn > N (where
N is defined as in (7)),

Hs
n(X(κ)) 6

∑
{a1,...,an|a1...an>κn}

n∏
i=1

1

a2s
i

.
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Note that the subscriptε in the Hausdorff function has been replaced byn. The limit
ε → 0 that gives the Hausdorff measure will then become the limitn → ∞. This is where
lemma 3.1 is then useful, as,

Hs
n(X(κ)) 6

∑
m>κn

dn(m)

m2s
= c(n, κn)

where 2s = r. So (11) gives the bound,

Hs
n(X(κ)) 6

(
2ζ(2s)

2s − 1

)n 1

κ(2s−1)n

n−1∑
l=0

(logκn)l

l!
.

Now providingκ is reasonably large(> e), the sum is an increasing series. Thus, replacing
each term in the sum by the final term gives the bound,

Hs
n(X(κ)) 6

(
2ζ(2s)

2s − 1

)n 1

κ(2s−1)n

n2(n logκ)n

n!

which with Stirling’s formula;n! ≈ √
2πnnne−n (which can be found in [9]), yields;

Hs
n(X(κ)) 6 n

3
2√

2π

(
2eζ(2s) logκ

(2s − 1)κ2s−1

)n

. (15)

To find the functionHs(X(κ)), take the limitn → ∞, and zero is obtained provided,

2eζ(2s) logκ

(2s − 1)κ2s−1
< 1

which is satisfied for anys > 1
2 provided thatκ is sufficiently large. Thus the Hausdorff

measure is,

Hs(X(κ)) = 0

which in comparison with (5), gives12 as an upper bound on the Hausdorff dimensionD(X).

5. The lower bound

As outlined in section 2, a suitable measure,µ, is required on [0, 1]. First define the
measure,µn, of any setA ⊆ [0, 1] as,

µn(A) = (log 3)1−n
n−1∏
i=1

3i+1∑
ai=i

δi(a1, . . . , an−1) log

(
ai + 2

ai + 1

)
where,

δi(a1, . . . , an) =
 1 if A covers

3n+1∪
an=n

(a1, . . . , an)

0 otherwise.

Then the measureµ is defined by,

µ(A) = lim
n→∞ µn(A).

Note that providedm 6 n, since theYn are nested sets (see (8)),

µn([0, 1]) = µn(Ym) = µn(Ym−1)
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and,

µn(Ym) = (log 3)1−n
n−1∏
i=1

3j+1∑
ai=1

log

(
ai + 2

ai + 1

)

= (log 3)1−n
n−1∏
i=1

log

(
3i + 3

i + 1

)
= (log 3)1−n(log 3)n−1

= 1.

Thus, the total measureµ([0, 1]) = µ(Ym) = 1, which is finite, positive and independent
of m. Then asY is defined as∩∞

m=1Ym = limm→∞ Ym, then µ(Y ) = 1 > 0. Thus, the
condition that is required in the final step to reach (10) is met. Then it remains to show
that (9) is satisfied for any interval,I , in any cover,Ȳ , of Y . The intervals of cover̄Y will
first be reconstructed slightly to simplify the analysis. The aim of the reconstruction is so
that for anyI , an interval ofYm can be found, for somem, that coversI , such that the
endpoints ofI lie in distinct intervals ofYm+1.

As [0, 1] is a compact space, any cover has a finite subcover, so it will be assumed that
Ȳ is finite. This will have no effect on the infimum of (4). Now the size of the intervals
in Ȳ tend to zero asn → ∞, so the intervals of̄Y (that are now finite in number), can be
extended an arbitrarily small amount, such that the endpoints of these intervals lie outside
Yn, for sufficiently largen. The sum in (4) in then increased an arbitrarily small amount,
having negligible effect on the infimum. The intervals ofȲ must then coverYn. Then
reduce the intervals of̄Y until their endpoints meet those ofYn. This series of operations
has thus simplified the structure ofȲ with respect toYn.

For anyI ∈ Ȳ , let m be the largest integer such that the interval∪3m+1
am=m(a1, . . . , am)

completely coversI . The construction in the preceding paragraph has maximizedm. For
eacham ∈ {m, m+1, . . . , 3m+1}, there will be a distinct interval∪3m+4

am+1=m+1(a1, . . . , am+1)

of Ym+1 nested inside∪3m+1
am=m(a1, . . . , am) of Ym. After the reconstruction above, the

endpoints ofI lie in distinct intervals ofYm+1. These two intervals can be labelled as
s, t according to theam values the intervals take. Thens, t ∈ {m, m+ 1, . . . , 3m+ 1}, with
s < t . An upper bound on the left-hand side of (9) can obtained as follows. IfN > m

then,

µN(I) 6
am=t∑
am=s

µN((a1, a2, . . . , am))

= (log 3)1−N

[
m−1∏
i=1

log

(
ai + 2

ai + 1

)]
log

(
t + 2

s + 1

)
(log 3)N−m−1

= (log 3)−m log

(
t + 2

s + 1

) m−1∏
i=1

log

(
ai + 2

ai + 1

)
which gives,

µ(I) 6 (log 3)−m log

(
t + 2

s + 1

) m−1∏
i=1

log

(
ai + 2

ai + 1

)
.

Then asm 6 s, t 6 3m + 1,

µ(I) 6 (log 3)−m log

(
3m + 1 + 2

m + 1

) m−1∏
i=1

log

(
ai + 2

ai + 1

)
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so,

µ(I) 6 (log 3)1−m
m−1∏
i=1

log

(
ai + 2

ai + 1

)
.

Finally, note that, log
(

ai+2
ai+1

)
6 1

ai+1, so,

µ(I) 6 1

(log 3)m−1

m−1∏
i=1

(
1

ai + 1

)
. (16)

To obtain the right-hand side of (9) note that,

|I | 1
2 >

∣∣∣∣∣ ∞⋃
am+1=3m+2

(a1, . . . , am−1, t, am+1

∣∣∣∣∣
1
2

>
m−1∏
i=1

(
1

a1 + 1

)
1

t + 1

∣∣∣∣∫ ∞

am+1=3m+2

dx

(x + 1)2

∣∣∣∣ 1
2

. . . . . . (using (14))

>
m−1∏
i=1

(
1

ai + 1

)
1

3m + 2

1√
3m + 3

so,

|I | 1
2 > 1

(3m + 3)
3
2

m−1∏
i=1

(
1

ai + 1

)
.

In comparison with (16), this givesµ(I) 6 |I | 1
2 . Note that although this is only true while

m > 91, for m < 91, µ(I)A|I | 1
2 , whereA = (3(90) + 3)

3
2 and (9) is obtained. Thus, the

proof of theorem 1 is complete. �

6. Proving corollary 1.1

From theorem 1, the set of pointsα = [a1, a2, . . .] such that limn→∞ 1
n

∏n
i=1 ai = ∞ has

Hausdorff dimension1
2. From the recursive relationqn = anqn−1 + qn−2 given in (3), it

follows that if
∏n

i=1 a
1
n

i diverges, thenq
1
n
n certainly will. Thus, the set of theorem 1 (from

here on referred to asX) is a subset of that considered in corollary 1.1 (referred to asX̄).
Thus,X̄ automatically has a Hausdorff dimension with lower bound1

2. Essentially section 5
still applies. To complete the proof, section 4 needs to be modified slightly. So in a similar
manner to (7), consider the set of points that satisfy,

n∑
j=1

2j

j∏
i=1

ai > κn. (17)

This set includesX̄ as a subset. This can be seen with the aid of induction. First assume,

2n
n∏

i=1

ai > qn

to be true forn. Then,

2n+1
n+1∏
i=1

ai = 2an+12n
n∏

i=1

ai > 2an+1qn > qn+1
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so as this is true forn = 1, it is also true for anyn. Similarly, assume that for some value
n,

n∑
j=1

2j

j∏
i=1

ai > qn

then,
n+1∑
j=1

2j

j∏
i=1

ai =
n∑

j=1

2j

j∏
i=1

ai + 2n+1
n+1∏
i=1

ai > qn + 2n+1
n+1∏
i=1

ai > qn + qn+1 > qn+1.

The inequality is true forn = 1, so therefore also true for alln.
Thus, whenqn diverges, the sum certainly does, and the set considered in (17) covers

X̄. To prove the corollary, the method is the same as that of section 4, the following bound
being obtained, in much the same way that (15) was,

Hs
n(X̄) 6

n∑
i=1

i
3
2√
2π

(
4eζ(2s) logκ

(2s − 1)κ2s−1

)i

.

Note that,
4eζ(2s) logκ

(2s − 1)κ2s−1
< 1

can be satisfied for anys > 1
2, provided κ is sufficiently large. So by the ratio test

convergence can be seen to occur asn → ∞. Then if Hs(X̄) converges, by (5), it must
converge to zero. Thus,1

2 becomes an upper bound on the Hausdorff dimensionD(X̄), and
so the corollary is complete. �

7. Conclusion

The Hausdorff dimension ofX(κ) has been determined exactly asκ → ∞. It would be
interesting to findD(X(κ)) exactly, for finite values ofκ. From [5], the following result
may be found,

lim
n→∞

n∏
i=1

a
1
n

i =
∞∏

k=1

(
1 + 1

2k + k2

)logκ

log 2

for all ω = [a1, a2, . . .] ∈ [0, 1], bar a set of Lebegsue measure zero. Thus, for

κ 6
∏∞

k=1

(
1 + 1

2k+k2

)logκ

log 2
it is certainly true thatD(X(κ)) = 1. Similarly, for all

ω = [a1, a2, . . .] ∈ [0, 1], bar a set of measure zero, it is true that,

lim
n→∞ q

1
n
n = e

π2

12 log 2.

So if X̄(κ) denotes the corresponding set to corollary 1.1,D(X̄(κ)) = 1 for κ < e
π2

12 log 2,
which suggests thatD(X̄(κ)) 6= D(X(κ)) whenκ is finite. However, it seems likely that
tighter bounds than those used in (14) would be required.

These studies arose during the studies into the level spacing distributions of harmonic
oscillators of dimension two (see [6]). It was found that ifω was the ratio of the frequencies
of the oscillations, where the condition of theorem 1 was satisfied, then a delta function
was obtained for the spacing distribution. Note that the set in question is dense, meaning
the level spacing distribution is unstable with respect to the frequency ratio.

Similar results can be obtained using a result of Ramanujan for the system of a particle
trapped in a two-dimensional box.
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Lemma 7.1.(Ramanujan) Let Z(k) note the number of positive integersm 6 k that can be
expressed as the sum of two squares. Then,

lim
m→∞

Z(k)
√

ln k

k
=

√√√√1

2

∏
r≡3(mod4)

(
1 − 1

r2

)−1

Proof. See Hardy’s ‘Ramanujan’ [10]. �

This was used to obtain the following result

Theorem 2.Consider the quantized system of a particle trapped in a two-dimensional box,
such that the lengths of the sides of the box have ratioα = [a0, a1, a2, . . .]. Then the level
spacing distribution approachesδ(s) infinitely often if the ai have a subsequencebi such
that

lim
n→∞

ln bn+1

(a1 . . . an)4
→ ∞.

Proof. See appendix. �

This, as in the previous system, is an example of a dense set of ratios that give non-
generic behaviour. From [7], the generic distribution will be that of a Poisson process.
It would be worth investigating whether the set of theorem 2 has a positive Hausdorff
dimension.

In both the two-dimensional harmonic oscillator and the two-dimensional box, the
results have been about the non-generic behaviour of their level spacing distribution,
P(s), under certain conditions, in particular that their distributions are delta functions.
However, the average value ofδ(s) is zero, whereas the average value of the level spacing
distribution is defined to be unity, which appears to be a contradiction. NowP(s) is
defined as limU→∞ P(s, U), whereP(s, U) is the spacing distribution defined on spacings
corresponding to energy levels under an upper boundU (see [6]). For all finite values of
U the distributionP(s, U) has an average of unity. This gives the following inequality,

lim
U→∞

〈P(s, U)〉 6=
〈

lim
U→∞

P(s, U)

〉
where the brackets indicate the average.

The level spacing distribution is also defined for positive spacings only, whereas the delta
function suggests that most spacings are zero; another apparent contradiction. However, the
delta function merely indicates that for anyε > 0, the proportion of spacings< ε tends to
unity asU → ∞.

Although only two physical systems were looked at, the results obtained here suggest
similar behaviour for level spacing distributions in general. Finding other systems with
similar properties would be a worthwhile exercise.

It was interesting to see the areas of quantum mechanics, number theory and Hausdorff
dimension interact in this unexpected way.
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Appendix

To obtain the level spacing distribution,P(s), the quantized energy values are first
normalized, so that the average separation between consecutive levels is unity. Denoting the
normalized levels byU1 6 U2 6 . . . 6 Ui 6 Ui+1 6 . . . (where degeneracy is represented
by repetitions), first defineP(s, U) via,

P(s, U) ds = 1

U
|{Ui < U |Ui+1 − Ui ∈ (s, s + ds)}|

where the vertical bars denote the size of the set, thenP(s) = limU→∞ P(s, U).
For the system in question, the claim is thatP(s, U) approachesδ(s) infinitely often.
More specifically, a diverging sequenceVn = Vn(bn) will be constructed such that
limn→∞ P(s, Vn) ≈ δ(s).

For the two-dimensional box (see [7]), the valuesUi arise from,

U = π

4
(αm2

1 + α−1m2
2)

asm1 andm2 vary over the positive integers. For anyn such thatan+1(= bn′) is a member
of the subsequence{bi}, consider the valuesW1 6 W2 6 . . . 6 Wi 6 Wi+1 6 . . . arising
from

W = π

4

(
pn

qn

m2
1 + qn

pn

m2
2

)
⇔ 4Wpnqn

π
= (pnm1)

2 + (qnm2)
2

asm1 andm2 vary over the positive integers, wherepn/qn is thenth convergent toα. Then
using lemma 6.1, the number of distinct valuesWi < W that occur will be√

1

2

∏
r≡3(mod4)

(1 − r−2)−1
4Wpnqn

π
√

ln(Wpnqn)
.

As the total number ofWi < W , is W (as the average spacing is unity), the proportion of
distinct values is,√

8
∏

r≡3(mod4)(1 − r−2)−1p2
nq

2
n

π2 ln(Wpnqm)
.

If P(s, W) denotes the distribution arising from theWi spacings, the value above will be
the proportion of non-zero spacings. If this quantity tends zero, thenP(s, W) tends toδ(s),
i.e. all spacing are essentially zero. Equivalently,ln(Wqn)

q4
n

is required to diverge.

Now asα ≈ pn

qn
, thenWi ≈ Ui , so to each zero spacing ofP(s, W), there will correspond

a small spacing that contributes toP(s, U). A condition onan+1 shall be found such that
when U = Vn′ , ln(Wqn)

q4
n

diverges and the small spacings are all bounded by someε > 0.
Now,

|Ui − Wi | = π

4

∣∣∣∣m2
1

(
α − pn

qn

)
+ m2

2

(
α−1 − qn

pn

)∣∣∣∣
but from [1], α − pn

qn
= (−1)n

qnq
′
n+1

, giving,

|Ui − Wi | = π

4

∣∣∣∣m2
1(−1)n

qnq
′
n+1

− m2
2(−1)n

pnp
′
n+1

∣∣∣∣ 6 π

4

1

qnqn+1
|m2

1 + α−1m2
2| 6 Ui

αqnqn+1

which gives an upper bound on the small spacings. So ifVn = εαqnqn+1, whereU = Vn,
the small spacings are bounded byε. Then if ln(Uqn)

q4
n

diverges, all spacings will be bounded,
and soP(s, U) can be made arbitrarily close toδ(s), as ε can be arbitrarily small. This
completes the proof. �
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